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Academic Analytics:  

Predictions around Argentine “Aprender” National Evaluation 

 

Federico Ferrero 

 

In Argentina, each year the National Evaluation Operation “Aprender” is carried out. This 

assessment is aimed at high school seniors and has the purpose to generate timely and quality 

information to better understand the achievements and pending challenges around students' learning 

(Aprender, 2019). The evaluation is developed by the Argentine Ministry of Education, Culture, 

Science and Technology, through the Secretariat for Educational Evaluation and collects data on 

knowledge of Mathematics, Language, and contextual information of the respondent students 

(sociodemographic variables, school climate, student self-perception, educational practices and use 

of technology, among other data).  

In general terms, results are used for educational decision-making every year, also 

considering the construction of time series to conduct analyzes from a longitudinal point of view. 

These approximations tend to be predominantly descriptive and although the use of algorithms 

dedicated to the prediction of students' success is increasingly frequent at the global level 

(Jayaprakash, Moody, Lauría, Regan and Baron, 2014), such Machine Learning techniques are not 

usually applied to this specific evaluation. 

If the use of these techniques is reviewed in other latitudes, it is observed that new evaluative 

developments have a place not only at the educational systemic level but also at the level of 

individual learning. Indeed, efforts to develop “Predictive Analytics” (Holmes, Bialik, and Fadel, 

2019; Siegel, 2016; Williamson, 2016) are increasing with the objective of, for example, identifying 

students “at-risk” and tailoring, in this way, pedagogical interventions. In any case, there are long 

controversies around the accepted degree of granularity of the predictions: if it is convenient to 

make predictions on each individual or if it should be done on groups or institutions. 

In this context, this study proposes not only an Exploratory Data Analysis but also a 

Predictive Analysis that use Machine Learning techniques with the purpose of finding the most 

accurate and adequate predictive hypotheses for the Argentine “Aprender” National Evaluation. 

In other words, this Academic Analytics exercise contemplates the use of knowledge mining 

techniques that allow predicting student performance beyond the conventional approach of 

hypothesis testing inscribed in what Leo Breiman (2001) calls the “Data Modeling Culture”. 
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Following this author, the challenge is to be able to account for the nature of phenomenon 

according to the structure of data we have and not to implant a predefined model in the form of a 

template that is insensitive to the behavior of the data with which we work. In this line, Breiman 

argues that the data and the problem should guide the solutions and not the a priori adoption of 

techniques that only permit conclusions to be drawn on the model and not on the data. In his own 

words: “If all a man has is a hammer, then every problem looks like a nail. The trouble is that 

recently some of the problems have stopped looking like nails” (2001; 204). 

Based on these discussions and our approximation to the “Algorithmic Modeling Culture”, it 

is expected that the results to be obtained in this exercise will offer considerable predictive precision 

in models that, in short, explain more exquisitely the educational phenomena here studied. In the 

longer term, this would also imply that teachers and administrators can take advantage of such 

results to better understand their students’ learning processes and, thus, be able to personalize 

pedagogical interventions based on the patterns and trends of success identified. 

Data and Methodology 

“Aprender” National Evaluation data is online available for the 2019 edition, the last year in 

which the operation was conducted due to the COVID-19 pandemic and school lockdowns. In that 

opportunity 343,751 high school senior students were assessed but, in this study, we will work with a 

particular jurisdiction, the province of Cordoba. To take that decision, computational power 

limitations to carry out the analyzes were considered. In this province, the second-biggest 

jurisdiction in the country, N = 34,191 students were evaluated and their data were anonymized to 

preserve the identity of the respondents. 

The dependent variables are Language Performance (ldesemp) and Math Performance 

(mdesemp) and their values are presented in a classification of 4 categories:  below basic level, basic 

level, satisfactory level, and advanced level. 

A considerable number of other 246 independent variables include gender, sector (public or 

private school management), ambit (rural or urban), student socioeconomic situation, student 

cultural consumption, school climate, student self-perception, educational practices and use of 

technology, migration status, among others. 

The analytical strategies were deployed in three different moments.  

First, an Exploratory Data Analysis is carried out selecting classic pedagogical variables 

historically used to account for student performances. These variables include: sector, ambit, gender, 
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repetition, student employment, and student socioeconomic level. This exploratory instance was 

supported by visualizations of the data constructed with R. 

Second, using regsubsets with leaps package, the work focused on finding the best possible 

models. For Language Performance backward selection was used while for Math Performance 

forward selection was chosen. In this instance, two questions were answered: how many the optimal 

predictors in each case are and what these predictors are. AdjR2, BIC, and Cp were calculated to 

determine the number of covariates and then graphs were produced with car library to facilitate the 

interpretation of the outputs of the regsubsets functions. 

Finally, Supervised Learning techniques were applied. In the first place, multiple regressions 

were run with the predictors found relevant both in the case of Language and Math Performances. 

Subsequently, Tree-Based-methods were used with decision trees and conditional decision trees and 

then cross-validations were conducted. After the interpretation of performance prediction 

considering specific students' cases, via confusion matrixes and accuracy rates, the techniques were 

compared to identify the most powerful one. 

 

Exploratory Data Analysis 

Based on our initial explorations with traditional variables used to predict performance in 

educational settings, some findings can be listed. 

First, Figure 1 shows that there is a positive and linear association between Language 

Performance and Math Performance. 

 

Figure 1 
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library("car") 

scatterplot(ldesemp ~ mdesemp, data=mydata, 

            xlab="Math Performance", ylab="Language Performance", 

            main="Language Performance by Math Performance") 

Second, when performances are analyzed according to Sector (public or private school 

management) and Ambit (either urban or rural), it is observed that in the case of Language scores 

there are better results at private schools and no differences between ambits: 50% of cases in private 

schools are between satisfactory and advanced while in the public system, 50% of observations are 

between basic and satisfactory. Also, according to the boxplots, it should be noted that data for 

Language are more dispersed in the public sector and less in the private type of school management. 

 

Figure 2 

 

par(mfrow=c(2, 2)) 

boxplot(ldesemp~sector,data=mydata, main="Language Performance by Sector", sub="1= Pub
lic  2= Private", 

        xlab="Sector", ylab="Language Performance", col="orange") 

 

boxplot(ldesemp~ambito,data=mydata, main="Language Performance by Ambit", sub="1= Urba
n  2= Rural", 

        xlab="Ambit", ylab="Language Performance", col="orange") 
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boxplot(mdesemp~sector,data=mydata, main="Math Performance by Sector", sub="1= Public  
2= Private", 

        xlab="Sector", ylab="Math Performance", col="lightblue") 

 

boxplot(mdesemp~ambito,data=mydata, main="Math Performance by Ambit", sub="1= Urban  2
= Rural", 

        xlab="Ambit", ylab="Math Performance", col="lightblue") 

 

Regarding Mathematics scores, there is evidence of better performance in private and urban 

schools: 50% of cases in private schools are between basic and satisfactory while in the public 

system 50% of students are between below-basic and satisfactory. Likewise, Math performance in 

rural ambit seems to be significantly worse than in urban schools. The existence of an outlier value 

should be also noted in the case of the rural ambit for Mathematics: this presence will require further 

examinations and perhaps treatments to balance the data. 

In Figure 3, the stacked bar graphs show absolute frequencies of students according to their 

performance by gender. On the one hand, in terms of Language scores, it is reported a better 

performance in women (39% at least obtain the satisfactory level while 31% of men achieve this 

level). Both groups have 13% of students in basic and low level. On the other hand, Math scores 

show worse performance in women (32% obtain low and basic levels against 25% in the case of 

male students). Both last groups have 19% of students in satisfactory and advanced levels. 

 

Figure 3 
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par(mfrow=c(1, 2)) 

 

counts1 <- table(mydata$ldesemp, mydata$gender) 

barplot(counts1, main="Language Performance Level by Gender", sub="1= Male 2= Female 3
= Other", 

        xlab="Gender", col=c("red","orange","lightblue","forestgreen"), ylim=c(0,20000
)) 

     

 

counts2 <- table(mydata$mdesemp, mydata$gender) 

barplot(counts2, main="Math Performance Level by Gender", sub="1= Male 2= Female 3= Ot
her", 

        xlab="Gender", col=c("red","orange","lightblue","forestgreen"), 

        legend.text = c("Low", "Basic", "Satisf.", "Adv."), ylim=c(0,20000)) 

 

Figure 4 focuses on performances by school repetition and students’ employment status. In 

the case of Language, a clear better performance is recorded in non-repeating students and students 

who do not work. Along the same lines, for Math scores, better performance is also observed in 

non-repeating students although there are no apparent differences when considered worker 

students. Anyway, it should be said that a considerable number of missing values in this variable may 

have skewed these results. As before, outliers values should be noticed and explored in depth. 

Figure 4 
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par(mfrow=c(2, 2)) 

boxplot(ldesemp~repitencia_dicotomica,data=mydata, main="Language Performance by Schoo
l Repetition", sub="1= Repeated School Grade  2= Non Repeated School Grade  3= No answ
er", 

        xlab="School Repetition", ylab="Language Performance", col="pink") 

 

boxplot(mdesemp~repitencia_dicotomica,data=mydata, main="Math Performance by School Re
petition", sub="1= Repeated School Grade  2= Non Repeated School Grade  3= No answer", 

        xlab="School Repetition", ylab="Math Performance", col="pink") 

 

boxplot(ldesemp~trabaja_fuera_hogar,data=mydata, main="Language Performance by Student
s Who Work", sub="1= Yes  2= No  3= No answer", 

        xlab="Students Who Work", ylab="Language Performance", col="darkkhaki") 

 

boxplot(mdesemp~trabaja_fuera_hogar,data=mydata, main="Math Performance by Students Wh
o Work", sub="1= Yes  2= No  3= No answer", 

        xlab="Students Who Work", ylab="Math Performance", col="darkkhaki") 

 

Finally, Figure 4 presents trends related to performances by students' socioeconomic level. 

When analyzing Language scores, we find predominantly middle socioeconomic level students who 

obtain at least a satisfactory level (44%). In the case of Math, results are not so favorable since 

middle socioeconomic level students who obtain low and basic levels in their performances prevail 

(37%). 

Figure 4 
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par(mfrow=c(1, 2)) 

 

counts1 <- table(mydata$ldesemp, mydata$isocioa) 

barplot(counts1, main="Language Performance by Socioeconomic Level", sub="-1=Non Answe
r, 1= Low 2= Medium 3= High", 

        xlab="Socioeconomic Level", col=c("red","orange","lightblue","forestgreen"), y
lim=c(0,20000)) 

         

 

counts2 <- table(mydata$mdesemp, mydata$isocioa) 

barplot(counts2, main="Math Performance by Socioeconomic Level", sub="-1=Non Answer, 1
= Low 2= Medium 3= High", 

        xlab="Socioeconomic Level", col=c("red","orange","lightblue","forestgreen"), 

        legend.text = c("Low", "Basic", "Satisf.", "Adv."), ylim=c(0,20000)) 

 

Finding the Best Models 

Beyond these preliminary analyzes oriented by the use of classical variables in the field of 

educational knowledge, the next question that arose was for the most precise hypotheses when 

predicting performances. In this framework, backward algorithm was applied to identify the best 

predictors of Language Performance and forward selection in the case of Math Performance. 

 

library(leaps) 

leaps1<- regsubsets(ldesemp ~., data= mydata, nbest=1, method = "backward")  

leaps2<- regsubsets(mdesemp ~., data= mydata, nbest=1, method = "forward")  

 

Later, we focus on the identification of the optimal number of predictors. In the case of 

Language Performance (see Figure 5), 5 seems to be the better number of predictors for the model 

due to this number of variables shows the more adequate combination: high AdjR2 at the same time 

that low BIC and Cp. 
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Figure 5 

How Many IVs are the Optimal Number When Predicting Language Performance? 

 
 

leaps_summary1 <- summary(leaps1) 

require(tidyverse);require(ggplot2);require(ggthemes); 

data_frame(Cp = leaps_summary1$cp, 

           BIC = leaps_summary1$bic, 

           AdjR2 = leaps_summary1$adjr2) %>% 

        mutate(id = row_number()) %>% 

        gather(value_type, value, -id) %>% 

        ggplot(aes(id, value, col = value_type)) + 

        geom_line() + geom_point() + ylab('') + xlab('Number of Variables Used') + 

        facet_wrap(~ value_type, scales = 'free') + scale_x_continuous(breaks = 1:10) 

 

In the case of Math Performance (Figure 6), 8 is apparently the better number of predictors 

for the model because of the same combination of high AdjR2 and low BIC and Cp. 
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Figure 6 

How Many IVs are the Optimal Number When Predicting Math Performance? 

.  

leaps_summary2 <- summary(leaps2) 

data_frame(Cp = leaps_summary2$cp, 

           BIC = leaps_summary2$bic, 

           AdjR2 = leaps_summary2$adjr2) %>% 

        mutate(id = row_number()) %>% 

        gather(value_type, value, -id) %>% 

        ggplot(aes(id, value, col = value_type)) + 

        geom_line() + geom_point() + ylab('') + xlab('Number of Variables Used') + 

        facet_wrap(~ value_type, scales = 'free') + scale_x_continuous(breaks = 1:10) 

 

Subsequently, it was necessary to identify these optimal predictors. Two main ways can be 

adopted to achieve this objective: one is by analyzing the output of the subsets selection, and the 

other one is through graphics. Because the interpretation of the outputs can generate confusion 

given the considerable number of covariates, it was decided to work with the graphics alternative. 

In Figure 7 it is presented the plot crossing BIC statistic with subset sizes when predicting 

Language Performance using the function subsets from car library. This plot yields a list of codes for 

the predictors and, as can be seen below, these equivalencies are highlighted in red. 
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Figure 7 

What are the Best Predictors of Language Performance? 

 

library(car) 

subsets(leaps1, statistic="bic", xlim=c(-100,120), legend = FALSE) 

Therefore, we can say that according to the structure of our data, the 5 best predictors of 

Language Performance are: 

1. Math Performance (mdesemp) 

2. Do you receive payment for the job you do outside your home? (ap22) 

3. How difficult are the following activities for you? Understanding a text (a39_01) 

4. Student's socio-economical index (isocioa) 

5. Extra-age (sobreedad) 

It is suggestive how most of the variables detected make perfect sense in their conceptual 

contribution to the prediction of Language Performance. However, it is important to note here that 

one of the identified independent variables (Sex Education variable) was excluded because it was not 

considered conceptually relevant for the prediction of our dependent variable. 

Now, in Figure 8 are presented the 8 best predictors for Math Performance. In this case, also 

one of the independent variables was deleted (School service) due to its theoretical irrelevancy when 

predicting Math scores. 
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Figure 8 

What are the Best Predictors of Math Performance? 

 

library(car) 

subsets(leaps2, statistic="bic", xlim=c(-100,120), ylim=c(-13500,-9300), legend = FALS
E) 

 

As a result of applying the forward algorithm, the 7 best predictors of Math Performance 

can be listed as follows: 

1. Language Performance (ldesemp) 

2. Sector (either public or private) (sector) 

3. Gender (gender) 

4. Absenteeism. So far this year, how many times have you missed school? (ap26) 

5. How difficult do you find the following activities? Writing a text (ap39_02) 

6. To what extent do you agree with the following statements? I enjoy studying 

Mathematics (ap40_01) 

7. Student's socio-economical index (isocia) 

In Table 1, we are now able to present linear regressions outputs to predict Language and 

Math performances. Focusing on the most important coefficients in terms of absolute values, the 

improvement in Language Performance is associated with an increase of Math Performance by 46 
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percentage points (statistically significant at p <0.01). This coefficient is followed by medium and 

high socioeconomic students' level which increments Language performance by 21% and 36% 

respectively at p <0.01. There are also positive associations with difficulty to understand a text (p 

<0.01) as well as negative expectable associations with covariates such as working student (p <0.01), 

low student socioeconomic level (p <0.01), and over-age (p <0.05). 

Regarding Math Performance, the coefficients that contribute the most to its increase are 

Language Performance (by 44%), private sector school management (by 31%), high socioeconomic 

status of students (by 21%), all of them statistically significant at p <0.01.  

Likewise, there are positive associations with the fact of enjoying Maths and with medium 

socioeconomic level of students. Conversely, the coefficients that negatively impact Math 

Performance are being a female (by 17%), difficulty in writing a text (by 4.8%), low socioeconomic 

level (by 0.9%), and student absenteeism (by 0.03%) (all of them statistically significant at p <0.01). 

Here, it is important to note that explicative hypotheses around gender effects should be considered 

in terms of gender stereotypes and possible differential training paths intended for women in the 

Math realm. 

Regarding the robustness of models, standard errors are in general low which means precise 

estimations. Additionally, R2 shows how well the regression models fit the observed data and, in our 

cases, both of them indicate values higher than 30% which can be considered acceptable in our field 

of knowledge. 
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Table 1 

Linear Regressions Outputs 

 

rightfit_lang=lm(ldesemp~ mdesemp + ap22 + ap39_01 +factor(isocioa) + sobreedad, data=
mydata) 

summary(rightfit_lang) 

rightfit_math=lm(mdesemp~ ldesemp + factor(sector)+ factor(gender) + 

                         ap26 + ap39_02 + ap40_01 + factor(isocioa),data=mydata) 

summary(rightfit_math) 

 

Finally, this analytical exercise explored Tree-Based Models and analyzed their predictive 

accuracy. To do this, the following steps were followed: (1) use subset function to group variables 

selected previously; (2) rename such variables; (3) create new dataset without missing data through 
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simple omissions; (4) recode lang_perf and math_perf as dummy variables (1 for satisfactory and 

advanced, 0 for basic and below) and then set seed; (5) order data by row number; (6) sample for 

training data (selection of 70% of data); (6) build training data and testing data; (7) run decision tree 

models; (8) plot decision trees; and (9) construct confusion matrixes and calculate accuracies. 

For the case of the Language Performance decision tree, the graph shown in Figure 9 was 

obtained. When interpreting the tree, we can take the case of a particular student. Suppose we want 

to predict the chances that a student accomplishes at least satisfactory Language Performance Level 

when she/he presents: (1) Math Performance higher than 1.5 but less than 2.5 (basic level), (2) 

socioeconomic level lower than 1.5 (low level), and (3) a job payment value lower or equal to 1.5 

(which means that the student does not work). According to the decision tree, in this particular case, 

this student has a 4% of chance of accomplishing at least a satisfactory Language Performance level. 

Figure 9 

Decision Tree Language Performance 

 

library("rpart") 

library("rpart.plot") 

library("rattle") 

library(AER) 
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tree_base <- subset(mydata, select = c(ldesemp, mdesemp, ap22, isocioa, sobreedad)) 

names(tree_base)[1] <- "lang_perf" 

names(tree_base)[2] <- "math_perf" 

names(tree_base)[3] <- "job_pay" 

names(tree_base)[4] <- "socioeconom" 

names(tree_base)[5] <- "overage" 

tree_base <- na.omit(tree_base) 

tree_base$lang_perf <- ifelse(tree_base$lang_perf >= "3", 1, 0); 

set.seed(1001) 

new_tree_base <- tree_base[sample(nrow(tree_base)),] 

t_idx <- sample(seq_len(nrow(tree_base)), size = round(0.70 * nrow(tree_base))) 

traindata <- new_tree_base[t_idx,] 

testdata <- new_tree_base[ - t_idx,] 

dtree_lang <- rpart::rpart(formula = lang_perf ~ ., data = traindata, method = "class"
, control = rpart.control(cp = 0.001)) # complexity parameter 

rattle::fancyRpartPlot(dtree_lang, type = 1, main = "Decision tree: Language Performan
ce", caption = "Accomplish at Least Satisfactory Language Performance Level" ) 

 

In Figure 10 the decision tree for Math Performance is included. In the same way as in the 

previous one, analysis of different profiles can be conducted. For example, a student with Language 

Performance lower than 3.5 but higher than 2.5 (satisfactory level), who attends a private school 

(sector value higher than 1.5) and has a “enjoy Math value” higher than 2.5 (which means that does 

agree with the sentence) presents a final 10% of chance of accomplishing at least satisfactory Math 

Performance level. 

 

 

 

 

 

 

 

 

 

 



18 
 

Figure 10 

Decision Tree Math Performance

 

tree_base <- subset(mydata, select = c(mdesemp, ldesemp, sector, gender, ap26, 

                                            ap39_02, ap40_01, isocioa)) 

names(tree_base)[1] <- "math_perf" 

names(tree_base)[2] <- "lang_perf" 

names(tree_base)[5] <- "absent" 

names(tree_base)[6] <- "dif_writing" 

names(tree_base)[7] <- "enjoy_math" 

names(tree_base)[8] <- "socioeconom" 

tree_base <- na.omit(tree_base) 

tree_base$math_perf <- ifelse(tree_base$math_perf >= "3", 1, 0); 

set.seed(1001) 
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new_tree_base <- tree_base[sample(nrow(tree_base)),] 

t_idx <- sample(seq_len(nrow(tree_base)), size = round(0.70 * nrow(tree_base))) 

traindata <- new_tree_base[t_idx,] 

testdata <- new_tree_base[ - t_idx,] 

dtree_math <- rpart::rpart(formula = math_perf ~ ., data = traindata, method = "class"
, control = rpart.control(cp = 0.001)) # complexity parameter 

rattle::fancyRpartPlot(dtree_math, type = 1, main = "Decision tree: Math Performance", 
caption = "Accomplish at Least Satisfactory Math Performance Level" ) 

 

Additional Conditional Inference Trees were modeled and cross-validation has been 

completed to compare the accuracy of our trees. Table 2 shows these results in which decision trees 

for Language Performance and Math Performance indicate greater accuracy compared to 

Conditional Inference Trees (0.767 and 1.764 respectively). In turn, the predicted accomplish rate is 

higher in Language Performance decision tree (0.809) in comparison to the decision tree for Math. 

Inversely the predicted not accomplish rate is higher in Math Performance decision tree (0.777). It 

could be suggested that the tree-based model for Language Performance does a slightly better job 

according to the structure of our data. 

Table 2 
Accuracy Comparison among Decision Trees 

  
Language 

Performance 
Math 

Performance 

Decision Trees 

Accuracy 0.7679725 0.7649435 

Predicted Accomplish Rate 0.8090665 0.7415507 

Predicted Not Accomplish 
Rate 

0.6147971 0.7778474 

Conditional Inference 
Trees 

Accuracy 0.7653473 0.7610057 

Predicted Accomplish Rate 0.7986811 0.7513612 

Predicted Not Accomplish 
Rate 

0.6218532 0.7658381 
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# Decision Tree: Language Performance 

resultdt <- predict(dtree_lang, newdata = testdata, type = "class") 

cm_langdt <- table(testdata$lang_perf, resultdt, dnn = c("Actual", "Predicted")) 

cm_langdt 

##       Predicted 

## Actual    0    1 

##      0 1288 1491 

##      1  807 6318 

cm_langdt[4] / sum(cm_langdt[, 2]) 

## [1] 0.8090665 

cm_langdt[1] / sum(cm_langdt[, 1]) 

## [1] 0.6147971 

accuracydt <- sum(diag(cm_langdt)) / sum(cm_langdt) 

accuracydt 

## [1] 0.7679725 

 

# Conditional Decision Tree: Language Performance 

cm_langcit = table(testdata$lang_perf, round(predict(cit, newdata = testdata)), dnn = 
c("Actual", "Predicted")) 

cm_langcit 

##       Predicted 

## Actual    0    1 

##      0 1161 1618 

##      1  706 6419 

cm_langcit[4] / sum(cm_langcit[, 2]) 

## [1] 0.7986811 

cm_langcit[1] / sum(cm_langcit[, 1]) 

## [1] 0.6218532 

accuracycit <- sum(diag(cm_langcit)) / sum(cm_langcit) 

accuracycit 

## [1] 0.7653473 

 

# Decision Tree: Math Performance 

resultdt <- predict(dtree_math, newdata = testdata, type = "class") 
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cm_mathdt <- table(testdata$math_perf, resultdt, dnn = c("Actual", "Predicted")) 

cm_mathdt 

##       Predicted 

## Actual    0    1 

##      0 4965  910 

##      1 1418 2611 

cm_mathdt[4] / sum(cm_mathdt[, 2]) 

## [1] 0.7415507 

cm_mathdt[1] / sum(cm_mathdt[, 1]) 

## [1] 0.7778474 

accuracydt <- sum(diag(cm_mathdt)) / sum(cm_mathdt) 

accuracydt 

## [1] 0.7649435 

 

# Conditional Decision Tree: Math Performance 

cm_mathcit = table(testdata$math_perf, round(predict(cit, newdata = testdata)), dnn = 
c("Actual", "Predicted")) 

cm_mathcit 

##       Predicted 

## Actual    0    1 

##      0 5053  822 

##      1 1545 2484 

cm_mathcit[4] / sum(cm_mathcit[, 2]) 

## [1] 0.7513612 

cm_mathcit[1] / sum(cm_mathcit[, 1]) 

## [1] 0.7658381 

accuracycit <- sum(diag(cm_mathcit)) / sum(cm_mathcit) 

accuracycit 

## [1] 0.7610057 

 

 

Code and Outputs 

https://federico-jf.github.io/Knowledge-Mining/Final-Project.html 

 

 

https://federico-jf.github.io/Knowledge-Mining/Final-Project.html
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Conclusions and Discussions 

This analytical exercise has addressed different predictive strategies that could guide 

pedagogical decisions in Argentine educational institutions including not just content-delivery 

strategies but also resources allocation, design of strengthening programs for students' 

performances, among others. 

As observed, the analysis highlights the differences found between predictions made with 

more traditional hypothesis testing methods and those of Machine Learning aimed not just at 

achieving more precision but also identifying correct hypotheses (James, Witten, Hastie and 

Tibshirani, 2013). In fact, the main conclusions that emerge from this exercise indicate: 

First, the most accurate predictive hypotheses for the Argentine “Aprender” National 

Evaluation can be identified using Machine Learning techniques when distinguishing optimal 

predictors for Language and Math Performances. In return, it should be noticed that 

traditional/classic pedagogical variables are not always the ones that best predict performance 

according to the Machine Learning techniques here utilized. 

Second, an analysis of this type can help to adequately identify the dimensions to promote in 

projects for the design of educational public policies. The structure of the data itself “dictates” 

particular decisions without the need to assume a priori models that are often ineffective to 

understand the phenomenon submitted to analysis (Breiman, 2001). 

Third, the prediction used to identify students at risk and then to make interventions aimed 

at strengthening desired performances can be an interesting pedagogical strategy to develop. In this 

sense, predictive systems that prevent unwanted results are considered more suitable than predictive 

systems aimed at the selection of students. Ethical discussions are relevant at this point when 

addressing such issues in the pedagogical field due to the possible existence of errors that can affect 

students' life projects (O'neil, 2016).  

Finally, some limitations of this study should be noticed. Undoubtedly, data preprocessing 

could be bolstered with more intensive work on balancing the dataset, also taking advantage of 

knowledge mining techniques. At the same time, the treatment of missing values could be 

approached with more sophisticated techniques of Machine Learning such as K-Nearest Neighbor 

(KNN) algorithm instead of the direct omission of observations that in this opportunity was used. 

Additionally, other knowledge mining techniques not explored here remain to be applied (such as 

Random Forests, etcetera) whose accuracy rates could offer better options when predicting the 

performances studied. 
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Future analyzes could consider comparisons of the results of the “Aprender” evaluation 

among Argentine provinces. The Argentine educational reality is clearly heterogeneous and 

interesting trends and patterns could emerge that allow a detailed look at the phenomena in each of 

the regions. In return, some findings could undoubtedly be generalized at the national level. Thus, 

educational decision-making could be nourished from this accurate and regional evidence.  
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